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LETTER TO THE EDITOR 

Real space renormalisation theory of self-avoiding walks 
on a Manhattan lattice 

Jeffrey J Prentis 
Department of Physics and Institute for Pure and Applied Physical Sciences, University 
of California, San Diego, La Jolla, CA 92093, USA 

Received 21 October 1983 

Abstract. The real space renormalisation group theory is applied to the self-avoiding walk 
(SAW) problem on a two-dimensional oriented lattice known as the Manhattan lattice. A 
finite lattice renormalisation transformation is used to calculate the connectivity constant 
p and the size exponent U. A more general SAW model is defined that contains the oriented 
and non-oriented lattice problems as special cases. A renormalisation group analysis of 
this model provides evidence that the SAW on the Manhattan lattice is in the same 
universality class as the ordinary non-oriented SAW problem. 

A random walk that contains no self-intersections is known as a self-avoiding walk 
(SAW). It is used as a simple model to represent the physical problem of a long chain 
molecule (polymer). The SAW problem consists of calculating the total number and 
the average end-to-end distance of the class of SAW configurations with a given number 
of steps. In general, it is an unsolved mathematical problem. The SAWS are usually 
confined to a regular, non-oriented lattice. We consider the SAW problem on a 
two-dimensional oriented square lattice, known as the Manhattan lattice (see figure 
1). The direction of each step of a SAW on this lattice must be oriented with the 
underlying bond direction. 

Recently, there has been considerable interest in the effect of various types of 
directionality, typically characterised by a global anisotropy, when imposed on lattice 
statistics problems, including SAWS (Redner and Majid 1983), percolation (De'Bell 
and Essam 1983) and lattice animals (Herrmann et a1 1983). The solvability of the 
recent directed SAW problems (Redner and Majid 1983) is attributed to the nature 
of the directionality which essentially removes the self -avoiding constraint by forcing 
the constraint to exist trivially in only a single dimension of the problem. In contrast, 
the Manhattan orientation preserves the self-avoiding constraint and in this sense, the 
Manhattan lattice problem remains non-trivial. 

The SAW problem on a Manhattan lattice was first studied by Kasteleyn (1963). 
In this study, the enumeration of the total number of Hamilton or compact walks on 
a two-dimensional square Manhattan lattice was solved exactly. A Hamilton walk is 
a SAW which visits every point of the lattice. The Manhattan orientation makes the 
Hamilton walk problem susceptible to the powerful methods of graph theory (Kasteleyn 
1967) and, as a consequence, renders this problem exactly solvable. 

For the general SAW problem (not restricted to the Hamilton class) on any regular 
lattice, an exact solution does not exist if the dimension of space d > 1. Recently, 
however, an exact solution for d = 2, based on some plausible assumptions, has been 
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Figure 1. The Manhattan lattice. Figure 2. Finite Manhattan lattice ( b  = 3 cell) renor- 
malisation. The lattice site rescaling and the bond 
orientation renormalisation are illustrated. 

calculated (Nienhuis 1982) for an unphysical model which can be mapped onto the 
non-oriented SAW problem on a hexagonal lattice. 

The statistical behaviour of a SAW is determined by the total number ZN and the 
mean square end-to-end distance (R2) ,  of the class of SAWS of N steps. The asymptotic 
( N  + CO) behaviour of these quantities assumes the form (McKenzie 1976) 

Z,  - ( R 2 ) N  - N2”.  (1) 

This defines the ‘critical’ exponents y and v and the connectivity constant p. For the 
general SAW on a regular non-oriented square lattice, the current best numerical 
estimates (McKenzie 1976, and references therein) are 

p = 2.6385 * 0.0003, Y =0.750*0.0025 (3/4). 

The values in the parentheses are the conjectured results based on the indirect exact 
solution (Nienhuis 1982). 

The general SAW problem on a Manhattan square lattice has received considerably 
less attention than the non-oriented problem. Numerical studies (Barber 1970, Malakis 
1975) indicate that the statistical descriptors of this problem have the values 

y =  1.335k0.005 (43/32), 
(2) 

p M a n =  1.733*0.003, y M a n =  1.33*0.03, vMan = 0.745 * 0.005. (3) 

The bond orientation constraint at each vertex makes it natural for the connectivity 
constant pMan, which is an effective coordination number and thus a non-universal 
property, to be significantly less than the p characterising the non-oriented lattice. 
However, the values for the exponents strongly suggest that the asymptotic behaviour 
of the SAW on the oriented (Manhattan) and non-oriented lattices are identical. 

A proof of the identity of the exponents would be significant because it would 
place the Manhattan lattice problem in the same universality class defined by the 
ordinary two-dimensional non-oriented SAW. Malakis (1975) has studied the effect 
of two non-trivial types of lattice orientation (Manhattan included) and provides 
additional numerical evidence that the exponent v is unchanged. The technical and 
practical utility of the existence of a single universality class arises when the oriented 
lattice version of the problem, although perhaps artificial, is more tractable. 

It may be argued that universality is not surprising if the only effect of the lattice 
orientation is to introduce short range correlations in the SAW which should not change 
the asymptotic behaviour. However, the main concern of this letter is to provide an 
example of how the renormalisation group theory can be used as an analytic tool to 
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understand the effect of directionality, whether relevant (crossover) or irrelevant 
(universality), on a given problem. 

The real space realisation of the renormalisation group theory has been adapted 
(Stanley er al1982) to the polymer problem and other ‘geometrical’ critical phenomena 
on non-oriented lattices. We now formulate the real space renormalisation theory on 
the oriented lattice and use it to calculate p and v characterising the Manhattan SAW. 

The generating functions (grand canonical representation) for ZN and ( R 2 ) N  are 
defined by 

In the K-space (fugacity space) representation, the asymptotic form of ZN and (R2)N 
in (1) translates into the following critical power law behaviour for K very near and 
less than K,: 

Z ( K ) - ( K c - K ) - Y ,  ( 6 )  

t 2 ( K )  - ( K , - K ) - 2 Y ,  ( 7) 
where 

K,= 1/p. (8) 
It is in the K-space representation that the renormalisation theory is most easily 
formulated and used to calculate v and K,. 

The construction of the real space renormalisation transformation on the Manhattan 
oriented lattice proceeds as follows. The original square Manhattan lattice is partitioned 
into cells such that the lattice of cells is also a square Manhattan lattice, but with a 
lattice spacing that is increased by a scale factor b. In this rescaling step of the 
renormalisation theory, not only must the number of lattice sites (bonds) be thinned 
out, but the lattice bond orientational ‘degrees of freedom’ must also be coarse grained. 
The bond orientation must be renormalised in such a way as to preserve the Manhattan 
structure in the renormalised lattice. To accomplish this renormalisation, we construct 
cells with b bonds on a side, where b must be an odd integer. The renormalised bond 
associated with a given cell assumes a direction that is determined by a ‘majority rule’. 
This rule is most easily illustrated by the example in figure 2 for a b = 3  cell. This 
lattice rescaling and bond orientation renormalisation result in a renormalised lattice 
that preserves the square symmetry and the Manhattan orientation of the original 
lattice. 

The next step in the real space renormalisation program is to construct the explicit 
renormalisation transformation. This is a map that relates the value of K in the original 
( K )  and the renormalised ( K ’ )  systems such that the underlying physics remains 
invariant. One of the simplest and most successful transformations is defined by the 
‘connectivity rule’ (Stanley er a1 1982). According to this rule, all the SAWS that span 
a cell in a given direction map onto a single renormalised bond. The existence of four 
types of cells (due to their bond orientations) on the Manhattan lattice presents a 
problem not encountered in the non-oriented lattices. To ensure that the transforma- 
tion is unique, we define ‘spanning’ the cell so that the resulting transformation is 
independent of the cell type. Consider the b = 3 cell in figure 2. The set of SAWS that 
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begin at any of the three vertices at the bottom (left) of the cell, preserve the bond 
orientation at each step, and exit from the cell by way of the top (right) edge, renormalise 
to a single vertical (horizontal) bond. A simple average over the three initial starting 
points is then performed. With each N-step walk is associated the weight K N .  In the 
single cell finite lattice approximation, there exists a single bond in the renormalised 
lattice with a weight K‘. We find that the b = 3 cell Manhattan lattice renormalisation 
transformation is 

K’=3(2K3+K4+3K5+K6+2K7+K6+2K9). (9) 

The critical fugacity K,  and exponent v are obtained from the non-trivial fixed 
point K* of K ’ ( K )  and the eigenvalue A of the linearised version of K’ (K)  at K*:  

K,=K* where K *  = K’(K*),  (10) 

Y =In b/ln A where A =dK’/dKIK*. (1 1) 

There exist trivial fixed points, K* = 0 and K* =CO, which represent the ‘empty’ and 
‘full’ lattice limits, respectively. From (9), we find the non-trivial fixed point K *  = 
0.7244 and eigenvalue A = 4.74. Thus, this simple finite lattice renormalisation theory 
of the SAW problem on a square Manhattan lattice yields the estimates 

)(LMan= 1.38, vMan = 0.706. (12) 
These renormalisation group estimates are to be compared with the numerical results 
in ( 3 ) .  The uncontrolled nature of the approximation, inherent in all real space 
renormalisation calculations, makes it difficult to ascertain the reliability of these 
estimates. However, experience with SAWS on non-oriented lattices (Stanley et a1 
1982) suggests that the small cell results are qualitatively reliable and extrapolate 
(rather slowly) to ‘correct’ values for increasing cell size. 

In order to address the question of universality, the model and renormalisation 
theory above must be modified. A single, more general SAW problem must be formu- 
lated such that it encompasses both the oriented and the non-oriented lattice problems. 
This unified problem is defined as follows. It is always assumed that the underlying 
lattice structure has the Manhattan orientation. All possible SAWS, whether they violate 
or obey the underlying lattice orientation, are allowed to coexist on the lattice. The 
set of Manhattan walks defines a small subset of all possible walks. We introduce a 
variable p ,  0 4 p s  1, which is defined as a probability weight to be associated with 
each step direction that obeys (1 - p  if it violates) the underlying orientation of the 
bond associated with the step. 

The generating function for the total number Z ( N ,  No, N,) of SAWS with N steps, 
No of which obey (0) the orientation and N, which violate (v) the orientation (N ,+N,  = 
N ) ,  is defined by the following ‘grand partition function’: 

Z ( K ,  p )  = 2 f 2 K N p N o ( l  - P ) ~ v Z ( N ,  No, N,).  ( 1 3 )  

Similarly, corresponding to the mean square end-to-end distance, we define the 
‘correlation length function’: 

N=O N,=O N,=O 

The introduction of the variable p essentially provides a mechanism to classify the 
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various walks among the set of all possible SAWS according to their degree of orientation. 
In particular, the following relations are satisfied: 

m 

Z ( K ,  p = 1 )  = K N Z ( N  = No, N,=O) ,  
N=O 

m 

Z ( K ,  p = 0 )  = 1 K N Z ( N  = N,, No = O), ( 1 6 )  
N = O  

m 

Z ( K ,  p =& = c ( K / 2 ) N z N .  
N=O 

Similar relations exist €or the correlation length function t 2 ( K ,  p). Thus the points 
(K, p = 1) and (K, p = 0) represent the SAWS on a Manhattan lattice which completely 
obey (Manhattan walk) and completely violate (‘anti-Manhattan’ walk) all the under- 
lying bond orientations, respectively. By symmetry, these problems are identical. The 
point ( K ,  p = 4) corresponds to the ordinary SAW problem on the non-oriented lattice 
but with a transformed fugacity K / 2 .  

The two-dimensional (K and p) renormalisation transformation is constructed from 
the same rules given above. In addition to the fugacity weight K associated with each 
step, there now exists the probability weight p(1 - p )  associated with a step direction 
that obeys (violates) the underlying bond orientation. Enumeration of the SAWS which 
span the b = 3 cell in figure 2 result in the following renormalisation transformation: 

K ’ p’ = F ( K ,  P, 1 - PI, ( 1 8 )  

F(K,  x, y )  = $ K 3 ( 2 x 3 +  y 3 )  +K4(x4+3x3y+4x2y2+  3xy3+ y 4 )  

+K5(3x5+2x4y+ 12x3y2+4x2y3+3xy4) 

+ K 6 ( x 6 + 4 2 y  + 5x4y2+4x3y3+ 4x2y4+ 2Xy5) 

+K7(2x7+7x6y+4x5y2+4x3y4+3x2y5)  

+ ~ 9 ( 2 ~ 9 +  2xsy + x 7 y 2  + 2 ~ ~ 3  + x3y6)1 .  

+ K 8 ( x 8  +2x7y +2x6y2+ x 5 y 3  +2x3y5)  

( 2 0 )  

Note that as in the pure Manhattan case, the transformation is invariant to the cell 
type and in addition preserves the symmetry between the Manhattan and anti-Manhattan 
oriented walks. Equations ( 1 8 )  and (19 )  may be solved to yield the two-dimensional 

The global structure characterising this renormalisation mapping is displayed in the 
phase diagram of figure 3. This diagram illustrates the global flow pattern, the fixed 
points and the critical surface that are obtained from iterating the map. There exists 
one non-trivial fixed point at ( K / 2 ,  p )  = (0 .4394, i )  corresponding to the ordinary SAW 
problem on the non-oriented lattice. The transformation near this fixed point has a 
relevant (K-direction) eigenvalue A = 4.52 and an irrelevant ( p-direction) eigenvalue 
A 2  = 0.61. Thus the critical descriptors characterising this SAW are 

map K’W, P )  and p ’ W ,  P ) .  

p = 2.28, U = 0.7283. (21 )  
These estimates are to be compared with the numerical results in (2). 
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Figure 3. Phase diagram generated from the finite lattice renormalisation transformation. 
The intersection of the critical surface (full curve) of the ordinary non-oriented SAW fixed 
point (0) with the p = 1 (Manhattan lattice SAW) axis is a statement of the universality 
of these two problems. The diagram also illustrates the local direction of the renormalisation 
group flow (arrows) and the trivial (K = 0 empty lattice walk and K = CO full tattice Hamilton 
walk) fixed points (0). 

The set of SAWS which flow into the non-trivial fixed point define the critical surface 
and form a universality class. Each walk in this class exhibits identical asymptotic 
behaviour characterised by the single exponent v. In particular, the intersection of 
the critical surface with the p = 1 ( p  = 0) axis is a statement of the universality of the 
Manhattan (anti-Manhattan) oriented walk and the non-oriented walk. The intersec- 
tion point determines the non-universal critical fugacity K,  characterising the Manhat- 
tan lattice problem. We find this intersection point at K,  = 0.7005. Note that this 
estimate for K,  is better than that obtained via the one-dimensional renormalisation 
transformation. The main results of the finite lattice renormalisation theory describing 
the SAW problem on a Manhattan lattice can be summarised as follows: 

p M a n  = 1.428, vMan = v = 0.7283. (22) 

If greater quantitative accuracy is desired, then it is merely a technical exercise to 
implement the renormalisation program on larger cells. 

The real space renormalisation group theory has been applied to the problem of 
the SAW on a Manhattan oriented lattice. The renormalisation of the bond orientational 
‘degree of freedom’ represents a new feature that has been incorporated into the 
conventional real space renormalisation program. This formulation can be extended 
to various other oriented lattice problems and directed phenomena. 

A more general SAW model has been defined by introducing a variable p, 0 6 p s 1, 
which represents the probability that the direction of a walk step is parallel (1 - p  if 
antiparallel) to the underlying bond orientation of the step. Hence, in this model, the 
class of all SAWS is partitioned into subclasses according to their degree of orientation. 
The incorporation of the p variable into the renormalisation group formalism results 
in a theory capable of understanding the connection between the oriented and the 
non-oriented lattice problems. In particular, the universality of the Manhattan and 
the non-oriented SAW problems (in the sense that vMan = v) emerges naturally within 
the framework of this renormalisation theory. A complete proof of universality would 
also need to establish the identity of the exponent y. 

It is a pleasure to thank Professor Shang-keng Ma for helpful discussions. This research 
is supported by the National Science Foundation under grant DMR80-02129. 



Letter to the Editor L27 

References 

Barber M N 1970 Physica 48 237 
De’Bell K and Essam J W 1983 J. Phys. A: Math Gen. 16 385 
Herrmann H J ,  Family F and Stanley H E 1983 J. Phys. A: Math. Gen. 16 L375 
Kasteleyn P W 1963 Physica 29 1329 
- 1967 Graph Theory and Theoretical Physics ed F Harary (London: Academic) 
Malakis A 1975 1. Phys. A: Math. Gen. 8 1885 
McKenzie D S 1976 Phys. Rep. C 27 35 
Nienhuis B 1982 Phys. Reo. Lett. 49 1062 
Redner S and Majid I 1983 1. Phys. A: Math. Gen. 16 L307 
Stanley H E, Reynolds P J,  Redner S and Family F 1982 Real Space Renormalization ed T W Burkhardt 

and J M J van Leeuwen (Berlin: Springer) 


